From genetic to bacteriological algorithms for mutation-based testing
نویسندگان
چکیده
The level of confidence in a software component is often linked to the quality of its test cases. This quality can in turn be evaluated with mutation analysis: faults are injected into the software component (making mutants of it) to check the proportion of mutants detected (‘killed’) by the test cases. But while the generation of a set of basic test cases is easy, improving its quality may require prohibitive effort. This paper focuses on the issue of automating the test optimization. The application of genetic algorithms would appear to be an interesting way of tackling it. The optimization problem is modelled as follows: a test case can be considered as a predator while a mutant program is analogous to a prey. The aim of the selection process is to generate test cases able to kill as many mutants as possible, starting from an initial set of predators, which is the test cases set provided by the programmer. To overcome disappointing experimentation results, on .Net components and unit Eiffel classes, a slight variation on this idea is studied, no longer at the ‘animal’ level (lions killing zebras, say) but at the bacteriological level. The bacteriological level indeed better reflects the test case optimization issue: it mainly differs from the genetic one by the introduction of a memorization function and the suppression of the crossover operator. The purpose of this paper is to explain how the genetic algorithms have been adapted to fit with the issue of test optimization. The resulting algorithm differs so much from genetic algorithms that it has been given another name: bacteriological algorithm. Copyright c © 2005 John Wiley & Sons, Ltd.
منابع مشابه
Computational Intelligence for Testing .NET Components
The mutation tool, the genetic and bacteriological libraries and the case study are available at http://franck.fleurey.free.fr Abstract In this paper, we present several complementary computational intelligence techniques that we explored in the field of .Net component testing. Mutation testing, associated to a global testing-for-trust methodology, serves as the common backbone for applying cla...
متن کاملAutomatic Test Cases Optimization Using a Bacteriological Adaptation Model: Application to .NET Component
In this paper, we present several complementary computational intelligence techniques that we explored in the field of .Net component testing. Mutation testing serves as the common backbone for applying classical and new artificial intelligence (AI) algorithms. With mutation tools, we know how to estimate the revealing power of test cases. With AI, we aim at improving automatically test cases e...
متن کاملSolving the Ride-Sharing Problem with Non-Homogeneous Vehicles by Using an Improved Genetic Algorithm with Innovative Mutation Operators and Local Search Methods
An increase in the number of vehicles in cities leads to several problems, including air pollution, noise pollution, and congestion. To overcome these problems, we need to use new urban management methods, such as using intelligent transportation systems like ride-sharing systems. The purpose of this study is to create and implement an improved genetic algorithms model for ride-sharing with non...
متن کاملA Novel Experimental Analysis of the Minimum Cost Flow Problem
In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Softw. Test., Verif. Reliab.
دوره 15 شماره
صفحات -
تاریخ انتشار 2005